Abstract
Tubular ATP release is regulated by mechanosensation of fluid shear stress (FSS). Polycystin-1/polycystin-2 (PC1/PC2) functions as a mechanosensory complex in the kidney. Extracellular ATP is implicated in polycystic kidney disease (PKD), where PC1/PC2 is dysfunctional. This study aims to provide new insights into the ATP signaling under physiological conditions and PKD. Microfluidics, pharmacologic inhibition, and loss-of-function approaches were combined to assess the ATP release in mouse distal convoluted tubule 15 (mDCT15) cells. Kidney-specific Pkd1 knockout mice (iKsp-Pkd1-/- ) and zebrafish pkd2 morphants (pkd2-MO) were as models for PKD. FSS-exposed mDCT15 cells displayed increased ATP release. Pannexin-1 inhibition and knockout decreased FSS-modulated ATP release. In iKsp-Pkd1-/- mice, elevated renal pannexin-1 mRNA expression and urinary ATP were observed. In Pkd1-/- mDCT15 cells, elevated ATP release was observed upon the FSS mechanosensation. In these cells, increased pannexin-1 mRNA expression was observed. Importantly, pannexin-1 inhibition in pkd2-MO decreased the renal cyst growth. Our results demonstrate that pannexin-1 channels mediate ATP release into the tubular lumen due to pro-urinary flow. We present pannexin-1 as novel therapeutic target to prevent the renal cyst growth in PKD.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have