Abstract
Genome-wide identification and comparative gene family analyses have been commonly performed to investigate species-specific evolution linked to various traits and molecular pathways. However, most previous studies were limited to gene screening in a single reference genome, failing to account for the gene presence/absence variations (gPAVs) in a species. Here, we propose an innovative pangenome-based approach of gene family analyses based on orthologous gene groups (OGGs). Using the basic helix-loop-helix (bHLH) transcription factor family in barley as an example, we identified 161 ∼ 176 bHLHs in 20 barley genomes, which could be classified into 201 OGGs. These 201 OGGs were further classified into 140 core, 12 soft-core, 29 shell, and 20 line-specific/cloud bHLHs, revealing a complete profile of bHLH in barley. Using a genome-scan approach, we overcome the genome annotation bias and identified on average 1.5 un-annotated core bHLHs per barley genome. We found that all core bHLHs belong to whole genome/segmental duplicates whilst dispensable bHLHs were more likely to result from small scale duplication events. Interestingly, we noticed that the dispensable bHLHs tended to enrich in specific subfamilies SF13, SF27, and SF28, implying the potential biased expansion of specific bHLHs in barley. We found that 50% of the bHLHs contain at least one intact transposon element within the 2kb upstream-to-downstream region. bHLHs with CNV have 1.48 TEs on average, significantly higher than 1.36 for core bHLH without CNV, supporting TEs’ potential role in bHLH expansion. Selection pressure analyses showed that dispensable bHLHs had experienced clear relaxed selection compared to core bHLHs, consistent with their conservation patterns. We further integrate pangenome with recently available barley pantranscriptome data in 5 tissues and discovered apparent transcriptional divergence within and across bHLH subfamilies. We conclude that pangenome-based gene family analyses can better describe the genuine evolution status of bHLHs untapped before and provided novel insights into bHLH evolution in barley. We expect this study will inspire similar analyses in many other gene families and species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.