Abstract

In this article we explain a form technique, of harmonic analysis, permitting an analysis of buckling on elastoplastic regime of rigidized panels solicited by longitudinal loads. We call there are two basic methods of studying buckling of compressed metal elements: forking of balance, which permits the CRITICAL loads of the PERFECT systems to be determined, and divergence of balance, permitting the EXHAUSTION loads of the REAL systems to be determined. The basic difference between both methods lies in the fact that the first analyses buckling as an indifferent balance problem (infinite solutions), whereas the second analyses buckling as a problem of resistance (highest point of the load-deformation diagram). We shall analyze the buckling of the panel, considering it as a balance forking problem. Consequently we shall imagine that the outer loads are perfectly centered in the middle of the panel, and we shall discard all their geometric imperfections. Firstly we are going to study buckling in elastic regime of these structural systems. We shall then go on to analyze the influence the residual welding tensions have at the value of the smaller critical load, in the case of the buckling taking place in elastic regime or in elastoplastic regime.

Highlights

  • on elastoplastic regime of rigidized panels solicited by longitudinal loads

  • The basic difference between both methods lies in the fact that the first analyses buckling as an indifferent balance problem

  • whereas the second analyses buckling as a problem of resistance

Read more

Summary

Introducción

Los paneles metálicos rigidizados longitudinalmente encuentran aplicación dentro del campo de las ingenierías civil, naval y aeronáutica. Para estudiar el pandeo del panel (bifurcación de equilibrio) debemos idealizar el problema suponiendo que, durante la actuación de las cargas exteriores, cada una de las chapas que componen el panel permanece plana, y que, además, los únicos esfuerzos inducidos por la acción exterior son esfuerzos Nx que se mantienen constantes dentro de cada chapa (figura 2). Para facilitar la integración de estas ecuaciones diferenciales, nos limitaremos a analizar el problema, en el supuesto de que en los dos extremos del panel rigidizado existan diafragmas, ya que, de este modo, se pueden satisfacer las condiciones de contorno en los extremos de las chapas con soluciones en serie de Levi. Las ecuaciones diferenciales que establecen el equilibrio en una posición ligeramente deformada, en la que existen ambos tipos de esfuerzos (esfuerzos primarios y secundarios), son: a) Comportamiento placa (10). Esto nos ha permitido aplicar la teoría lineal de la flexión de placas delgadas y desacoplar el comportamiento de la chapa como placa del comportamiento como laja

Integración del sistema de ecuaciones
11.1. Matriz de rigidez de la chapa referida a sus ejes locales
11.2. Proceso de formación de la matriz de rigidez del panel rigidizado
11.3. Análisis en ordenador
Matriz de rigidez de la chapa plastificada
Pandeo elastoplástico de paneles rigidizados
Conclusión
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.