Abstract

The degradation and erosion of solvent cast films and injection molded bars prepared from poly(ϵ-caprolactone) (PCL) and 2,2′-bis(2-oxazoline) linked poly(ϵ-caprolactone) (PCL-O) were evaluated in simulated gastric fluid (SGF) (pH 1.2, pepsin present) and in simulated intestinal fluid (SIF) (pH 7.5, pancreatin present). After incubation of the polymer films (10 mg) and bars (70 mg) in the medium, the resulting decrease in molecular weight (degradation) was determined by size exclusion chromatography and the weight loss of the preparations was measured. In addition, the effect of pancreatin on FITC–dextran (MW 4400) release from PCL and PCL-O microparticles, prepared by w/o/w double emulsion technique, was studied. No degradation or weight loss was observed for either PCL or PCL-O films in SGF (12 h incubation, 37 °C). When compared to PBS pH 7.4, pancreatin hardly enhanced the weight loss of PCL films and bars. In contrast, pancreatin enhanced substantially erosion of PCL-O films and bars. Unlike PCL preparations, the PCL-O preparations showed surface erosion in SIF. Pancreatin increased considerably FITC–dextran release from both PCL and PCL-O microparticles. In conclusion, the present results demonstrate the enzyme sensitivity of the novel PCL-O polymer. In addition, the results show that pancreatin present in intestinal fluid may substantially affect drug release from PCL based preparations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.