Abstract

To investigate the effects and underlying mechanisms of Panax quinquefolium saponin (PQS) on energy deficiency in hypoxia-reperfusion (H/R) induced cardiomyocytes. The H/R injury involved hypoxia for 3 h and then reperfusion for 2 h. Cardiomyocytes recruited from neonatal rat ventricular myocytes (NRVMs) were randomly divided into control, H/R, H/R+compound C (C.C), H/R+PQS, and H/R+C. C+PQS groups. BrdU assay, lactase dehydrogenase (LDH) leakage and early apoptosis rate were evaluated to assess cell damages. Contents of high energy phosphate compounds were conducted to detect the energy production. Protein expression levels of adenosine monophosphate-activated protein kinase a (AMPKα), glucose transporter 4 (GLUT4), phosphate fructose kinase 2 (PFK2), fatty acid translocase/cluster of differentiation 36 (FAT/CD36), and acetyl CoA carboxylase 2 (ACC2) in the regulatory pathways were measured by Western blotting. Immunofluorescence staining of GLUT4 and FAT/CD36 was used to observe the mobilization of metabolic transporters. PQS (50 mg/L) pretreatment significantly alleviated H/R-induced inhibition of NRVMs viability, up-regulation of LDH leakage, acceleration of early apoptosis, and reduction of energy production (P<0.05). Compared with the H/R group, up-regulated expression of AMPKα, GLUT4, PFK2, FAT/CD36 and ACC2 were observed, and more GLUT4 and FAT/CD36 expressions were detected on the membrane in the H/R+PQS group (P<0.05). These effects of PQS on H/R-induced NRVMs were eliminated in the H/R+C.C+PQS group (P<0.05). PQS has prominent advantages in protecting NRVMs from H/R-induced cell damages and energy metabolic disorders, by activation of AMPKα-mediated GLUT4-PFK2 and FAT/CD36-ACC2 pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.