Abstract
AbstractThe Khanka Massif is a crustal block located along the eastern margin of the Central Asian Orogenic Belt (CAOB) and bordered to the east by Late Jurassic–Early Cretaceous circum-Pacific accretionary complexes of the Eastern Asian continental margin. It consists of graphite-, sillimanite- and cordierite-bearing gneisses, carbonates and felsic paragneisses, in association with various orthogneisses. Metamorphic zircons from a sillimanite gneiss from the Hutou complex yield a weighted mean206Pb/238U age of 490 ± 4 Ma, whereas detrital zircons from the same sample give ages from 934–610 Ma. Magmatic zircon cores in two garnet-bearing granite gneiss samples, also collected from the Hutou complex, yield weighted mean206Pb/238U ages of 522 ± 5 Ma and 515 ± 8 Ma, whereas their metamorphic rims record206Pb/238U ages of 510–500 Ma. These data indicate that the Hutou complex in the Khanka Massif records early Palaeozoic magmatic and metamorphic events, identical in age to those in the Mashan Complex of the Jiamusi Massif to the west. The older zircon populations in the sillimanite gneiss indicate derivation from Neoproterozoic sources, as do similar rocks in the Jiamusi Massif. These data confirm that the Khanka Massif has a close affinity with other major components of the CAOB to the west of the Dun-Mi Fault. Based on these results and previously published data, the Khanka Massif is therefore confirmed as having formed a single crustal entity with the Jiamusi (and possibly the Bureya) massif since Neoproterozoic time.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have