Abstract

Although various excellent electrocatalysts/adsorbents have made notable progress as sulfur cathode hosts on the lithium-sulfur (Li-S) coin-cell level, high energy density (WG ) of the practical Li-S pouch cells is still limited by inefficient Li-ion transport in the thick sulfur cathode under low electrolyte/sulfur (E/S) and negative/positive (N/P) ratios, which aggravates the shuttle effect and sluggish redox kinetics. Here a new ternary fluoride MgAlF5 ·2H2 O with ultrafast ion conduction-strong polysulfides capture integration is developed. MgAlF5 ·2H2 O has an inverse Weberite-type crystal framework, in which the corner-sharing [AlF6 ]-[MgF4 (H2 O)2 ] octahedra units extend to form two-dimensional Li-ion transport channels along the [100] and [010] directions, respectively. Applied as the cathode sulfur host, the MgAlF5 ·2H2 O lithiated by LiTFSI (lithium salt in Li-S electrolyte) acts as a fast ionic conductor to ensure efficient Li-ion transport to accelerate the redox kinetics under high S loadings and low E/S and N/P. Meanwhile, the strong polar MgAlF5 ·2H2 O captures polysulfides by chemisorption to suppress the shuttle effect. Therefore, a 1.97Ah-level Li-S pouch cell achieves a high WG of 386Whkg-1 . This work develops a new-type ionic conductor, and provides unique insights and new hosts for designing practical Li-S pouch cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call