Abstract

Interfacial charge-transfer between perovskite and charge-transport layers plays a key role in determining performance of perovskite solar cells. The conventional viewpoint emphases the necessity of favorable energy-level alignment of the two components. In recent reports, efficient electron-transfer is observed from perovskite to fullerene-based electron-transport layers even when there are unfavorable energy-level alignments, but the mechanism is still unclear. Here, using an ultrafast in situ two-photon photoelectron spectroscopy, real-time observations of electron-transfer processes at CsPbI3/C60 interface in both temporal and energetic dimensions are reported. Due to strong electronic coupling, a large amount of interfacial hybrid states is generated at the interfaces, aiding fast photoinduced electron-transfer in ≈124fs. This process is further verified by nonadiabatic molecular dynamics simulations and transient absorption experiments. The short timescale explains why electron-transfer can overcome unfavorable energy-level alignments, providing a guideline for device design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.