Abstract
Based on six years of data from a field experiment near Pullman, WA, a bioeconomic decision model was developed to annually estimate the optimal post-emergence herbicide types and rates to control multiple weed species in winter wheat under various tillage systems and crop rotations. The model name, PALWEED:WHEAT, signifies a Washington-Idaho Palouse region weed management model for winter wheat The model consists of linear preharvest weed density functions, a nonlinear yield response function, and a profit function. Preharvest weed density functions were estimated for four weed groups: summer annual grasses, winter annual grasses, summer annual broadleaves, and winter annual broadleaves. A single aggregated weed competition index was developed from the four density functions for use functions for use in the yield model. A yield model containing a logistic damage function performed better than a model containing a rectangular hyperbolic damage function. Herbicides were grouped into three categories: preplant nonselective, postemergence broadleaf, and postemergence grass. PALWEED:WHEAT was applied to average conditions of the 6-yr experiment to predict herbicide treatments that maximized profit. In comparison to average treatment rates in the 6-yr experiment, the bioeconomic decision model recommended less postemergence herbicide. The weed management recommendations of PALWEED:WHEAT behaved as expected by agronomic and economic theory in response to changes in assumed weed populations, herbicide costs, crop prices, and possible restrictions on herbicide application rates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have