Abstract

Holes in metal films do not allow the propagation of light if the wavelength is much larger than the hole diameter, establishing such nanopores as so-called zero-mode waveguides (ZMWs). Molecules, on the other hand, can still pass through these holes. We use this to detect individual fluorophore-labelled molecules as they travel through a ZMW and thereby traverse from the dark region to the illuminated side, upon which they emit fluorescent light. This is beneficial both for background suppression and to prevent premature bleaching. We use palladium as a novel metal-film material for ZMWs, which is advantageous compared to conventionally used metals. We demonstrate that it is possible to simultaneously detect translocations of individual free fluorophores of different colours. Labelled DNA and protein biomolecules can also be detected at the single-molecule level with a high signal-to-noise ratio and at high bandwidth, which opens the door to a variety of single-molecule biophysics studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.