Abstract

The present distribution of Palaeozoic sediments in the Bornholm area is a consequence of several different tectonic regimes during the Phanerozoic eon. This development may be divided into three main evolutionary phases: A Caledonian to Variscian phase encompassing the Lower Palaeozoic sediments. The sediments are assumed originally to have showed a gradual thickness increase towards the Caledonian Deformation Front located to the south. This pre-rift development may be further subdivided into three sub-phases: A period of slow sedimentation on a relatively stable platform as recorded by the uniformly low thicknesses of the Cambrian to Lower Silurian sediments. A period of foreland-type rapid sedimentation commencing in the Llandoverian to Wenlockian, continuing in the Ludlovian and possibly into the Devonian. The period is characterized by /olding and uplift of the Caledonides to the south causing tectonic loading of the foreland and resultant rapid sedimentation in the foreland basin. A period of gravitational collapse causing minor erosion during the Devonian. The transition to the second major phase in the Phanerozaic structural development, during which the Sorgenfrei-Tornquist zone came into existence, is recorded by regional deposition of Carboniferous sediments. These sediments are, however, mostly removed by tater erosion. A syn-rift phase characterized by sedimentation in graben areas and expanding basins commencing in the Rotliegendes and continuing through the Triassic, Jurassic and Lower Cretaceous. This phase was probably initiated by a Late Carboniferous- Early Permian tensional dominated right-lateral wrench fault system within the Sorgenfrei-Tornquist zone. A Post-rift development phase dominated by Late Cretaceous carbonate sedimentation. During Late Cretaceous and Early Tertiary times the Bornholm area was strongly affected by inversion tectonism caused by compressional strike-slip movements. This resulted in reverse faulting and uplift and erosion of former basinal areas. Understanding the two latter phases is important for understanding the present distribution of the Palaeozoic. A key to understanding the hydrocarbon potential of the area is the maturation of the organic matter in the main potential source, the Ordovician Upper Alum Shale. Maturity was mainly achieved during the Silurian to Late Palaeozoic time, and little further maturation took place later. The Upper Alum Shale is accordingly expected to be overmature in the main part of the study area and mature in the Hano Bay Basin. This reflects the assumed primary uniform thickness of the Lower Palaeozoic, with a general thinning towards the northeast. A Caledonian to Variscian phase encompassing the Lower Palaeozoic sediments. The sediments are assumed originally to have showed a gradual thickness increase towards the Caledonian Deformation Front located to the south. This pre-rift development may be further subdivided into three sub-phases: A period of slow sedimentation on a relatively stable platform as recorded by the uniformly low thicknesses of the Cambrian to Lower Silurian sediments. A period of foreland-type rapid sedimentation commencing in the Llandoverian to Wenlockian, continuing in the Ludlovian and possibly into the Devonian. The period is characterized by /olding and uplift of the Caledonides to the south causing tectonic loading of the foreland and resultant rapid sedimentation in the foreland basin. A period of gravitational collapse causing minor erosion during the Devonian. The transition to the second major phase in the Phanerozaic structural development, during which the Sorgenfrei - Tornquist zane came into existence, is recorded by regional deposition of Carboniferous sediments. These sediments are, however, mostly removed by tater erosion. A syn-rift phase characterized by sedimentation in graben areas and expanding basins commencing in the Rotliegendes and continuing through the Triassic, Jurassic and Lower Cretaceous. This phase was probably initiated by a Late Carboniferous- Early Permian tensional dominated right-lateral wrench fault system within the Sorgenfrei-Tornquist zone. A Post-rift development phase dominated by Late Cretaceous carbonate sedimentation. During Late Cretaceous and Early Tertiary times the Bornholm area was strongly affected by inversion tectonism caused by compressional strike-slip movements. This resulted in reverse faulting and uplift and erosion of former basinal areas. Understanding the two latter phases is important for understanding the present distribution of the Palaeozoic. A key to understanding the hydrocarbon potential of thearea is the maturation of the organic matter in the main potential source, the Ordovician Upper Alum Shale. Maturity was mainly achieved during the Silurian to Late Palaeozoic time, and little further maturation took place later. The Upper Alum Shale is accordingly expected to be overmature in the main part of the study area and mature in the Hano Bay Basin. This reflects the assumed primary uniform thickness of the Lower Palaeozoic, with a general thinning towards the northeast.

Highlights

  • The general objective of the study is to provide a synthesis of the Palaeozoic tectonic and stratigraphic development of the Bornholm area

  • The present distribution of Palaeozoic sediments in the Bornholm area is a consequence of several different tectonic regimes during the Phanerozoic eon

  • The present structural configuration of the Palaeozoic strata is a result of a complex tectonic history

Read more

Summary

Introduction

The general objective of the study is to provide a synthesis of the Palaeozoic tectonic and stratigraphic development of the Bornholm area. The faults may have been active as normal faults before the inversion, the activity being indicated by minor thickness changes of the Palaeozoic succession across the faults Both grabens are part of the Polish - Danish Trough (Dadlez 1974, 1976, 1977) and are bounded to the northeast by the Koszalin Fault, which may be defined as the northwest limit of the Sorgenfrei-Tomquist Zone. Well data and seismic data provide sufficient constraints to locate the boundary between unfolded and folded Lower Palaeozoic sediments within a narrow zone Jess that 20 km from the north tip of Rugen, obliquely across the Gryfice and Kolobrzeg Grabens before merging with the Koszalin Fault zone at the Polish coast (Piske & Neumann 1990).

C LowerAlum
D Outcrop ol Lower Paleozoic
H I A T u s
D Cretaceous D Jurassic D Triassic
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.