Abstract

The Badenian (Middle Miocene) Ca‐sulphate deposits of the fore‐Carpathian basin – including the shelf and adjacent salt depocentre – have undergone varying degrees of diagenetic change: they are preserved mainly as primary gypsum in the peripheral part of the platform, whereas toward the centre of the basin, where great subsidence occurred during the Miocene, they have been totally transformed into anhydrite.The facies variation and sequence of Badenian anhydrites reflect different genetic patterns of two members of the Ca‐sulphate formation. In the lower member (restricted to the platform), anhydrite formed mainly by synsedimentary anhydritization (via nodule formation), whereas in the upper member (distributed throughout the platform and depocentre) the various gypsum/anhydrite lithofacies display a continuum of distinctive anhydrite type‐fabrics. These fabrics are based on petrographic features and show from the centre to the margin: (1) syndepositional, interstitial growth of displacive anhydrite; (2) early diagenetic, displacive to replacive (by replacement of former gypsum) anhydrite formation near the depositional surface; (3) early diagenetic, displacive to replacive anhydrite formation during shallow burial; and (4) late‐diagenetic (and only partial) replacement of gypsum at deeper burial. The cross‐shelf lateral relations of anhydrite lithofacies and fabrics suggest that the diagenesis developed as a diachronous process.These fabrics of the upper member reflect both palaeogeographic (linked to different parts of the basin) and burial controls. Anhydrite growth started very early in the basin centre, presumably related to high‐salinity pore fluids; anhydritization prograded updip toward the shelf (landward in a generalized cross‐section through the basin). The intensity of gypsum replacement by anhydrite was progressively attenuated landward by a decrease in the salinity of the pore fluids. In each part of the basin, the anhydrite fabric was also controlled by the texture and degree of lithification of the fine‐grained primary gypsum lithofacies. Recrystallization of these anhydrite fabrics during late diagenesis, linked to deeper burial conditions, is insignificant, allowing reconstruction of the original anhydritization pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.