Abstract

Botryococcus braunii is a colonial microalga that appears early in the fossil record and is a sensitive proxy of environmental and hydroclimatic conditions. Palaeozoic Botryococcus fossils which contribute up to 90% of oil shales and approximately 1% of crude oil, co-localise with diagnostic geolipids from the degradation of source-signature hydrocarbons. However more recent Holocene sediments demonstrate no such association. Consequently, Botryococcus are identified in younger sediments by morphology alone, where potential misclassifications could lead to inaccurate paleoenvironmental reconstructions. Here we show that a combination of flow cytometry and ancient DNA (aDNA) sequencing can unambiguously identify Botryococcus microfossils in Holocene sediments with hitherto unparalleled accuracy and rapidity. The application of aDNA sequencing to microfossils offers a far-reaching opportunity for understanding environmental change in the recent geological record. When allied with other high-resolution palaeoenvironmental information such as aDNA sequencing of humans and megafauna, aDNA from microfossils may allow a deeper and more precise understanding of past environments, ecologies and migrations.

Highlights

  • We investigate the potential for purifying Botyrococcus microfossils and ancient DNA (aDNA) from sediments known to contain the microalga

  • Conventional palaeoenvironmental analysis was used to determine the composition of the sediment in combination with palynological techniques to identify and quantify the putative B. braunii microfossils throughout a sediment core extracted from Boswell Lake, British Columbia, Canada

  • A complete Holocene sediment record was recovered from Boswell Lake (Fig. 1), a carbonate lake located in British Columbia, Canada (52°32′24.72′′N 121°27′5.23′′W)

Read more

Summary

Botryococcus braunii

Botryococcus braunii is a colonial microalga that appears early in the fossil record and is a sensitive proxy of environmental and hydroclimatic conditions. We show that a combination of flow cytometry and ancient DNA (aDNA) sequencing can unambiguously identify Botryococcus microfossils in Holocene sediments with hitherto unparalleled accuracy and rapidity. We first performed a two-dimensional gas chromatography analysis of the hydrocarbons present in the sediment to verify that the Botryococcus microfossils identified using these conventional techniques are co-localised with their associated source signature geolipids, as seen in oil shales. No such co-localisation was observed due to the migration and degradation of the diagnostic Botryococcus derived geolipids[27]. The combination of FC purification and DNA sequencing has wider applications to other microfossil species and the interpretation of their fossil record

Site Selection
Phylogenetic Assessment
Ancient DNA Analysis
Nuclear genome
Methods
Author Contributions
Findings
Additional Information
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.