Abstract

This paper presents a pairwise KLT-based compression algorithm for multispectral images. Although the KLT has been widely employed for spectral decorrelation, its complexity is high if it is performed on the global multispectral images. To solve this problem, this paper presented a pairwise KLT for spectral decorrelation, where KLT is only performed on two bands every time. First, KLT is performed on the first two adjacent bands and two principle components are obtained. Secondly, one remainning band and the principal component (PC) with the larger eigenvalue is selected to perform a KLT on this new couple. This procedure is repeated until the last band is reached. Finally, the optimal truncation technique of post-compression rate-distortion optimization is employed for the rate allocation of all the PCs, followed by embedded block coding with optimized truncation to generate the final bit-stream. Experimental results show that the proposed algorithm outperforms the algorithm based on global KLT. Moreover, the pairwise KLT structure can significantly reduce the complexity compared with a global KLT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call