Abstract
To explore the possibilities of combining multispectral magnetic resonance (MR) images of different patients within one data matrix. Principal component and linear discriminant analysis was applied to multispectral MR images of 12 patients with different brain tumors. Each multispectral image consisted of T1-weighted, T2-weighted, proton-density-weighted, and gadolinium-enhanced T1-weighted MR images, and a calculated relative regional cerebral blood volume map. Similar multispectral image regions were clustered, while dissimilar multispectral image regions were scattered in a single plot. Both principal component and linear discriminant analysis allowed discrimination between healthy and tumor regions on the image. In addition, linear discriminant analysis allowed discrimination between oligodendrogliomas and astrocytomas. However, the discriminant analysis method was partially capable of recognizing the tumor identity in unknown multispectral images. The proposed method may help the radiologist in comparing multispectral MR images of different patients in a more easy and objective way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.