Abstract
We present a fully automatic mixture-based algorithm for segmentation of brain tissues (white and gray matters - WM and GM), cerebral spinal fluid (CSF) and brain lesion to quantitatively analyze multiple sclerosis. The method performs intensity-based tissue classification using multispectral magnetic resonance (MR) images based on a stochastic model. With the existence of white Gaussian noise and spatially invariant blurring in acquired MR images, a Karhunen-Loeve (K-L) domain Wiener filter is applied for an accurate noise reduction and resolution restoration on blurred and noisy images to minimize the partial volume effect (PVE), which is a major limiting factor for the quantitative analysis. Following that, we utilize a Markov random field Gibbs model to integrate the local spatial information into the established expectation-maximization model-fitting algorithm. Each voxel is then classified by a mixture-based maximum a posterior (MAP) criterion, indicating its probabilities of belonging to each class, i.e., each voxel is labeled as a mixel with different tissue percentages, leading to further minimization of the PVE. The volumes of WM, GM and CSF are extracted from the mixture-based segmentation and the corresponding brain atrophies are computed. In this study, we have investigated the accuracy and repeatability of the algorithm with inclusion of noise analysis and point spread function for image resolution enhancement. Experimental results on both phantom and healthy volunteer studies are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.