Abstract
We prove that n pairwise commuting derivations of the polynomial ring (or the power series ring) in n variables over a field k of characteristic 0 form a commutative basis of derivations if and only if they are k-linearly independent and have no common Darboux polynomials. This result generalizes a recent result due to Petravchuk and is an analogue of a well-known fact that a set of pairwise commuting linear operators on a finite dimensional vector space over an algebraically closed field has a common eigenvector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.