Abstract

Recently, the persistence-based decomposition (PBD) model has been introduced to the scientific community by Rende et al. (2019). It decomposes a spread time series between two securities into three components capturing infinite, finite, and no shock persistence. The authors provide empirical evidence that the model adopts well to noisy high-frequency data in terms of model fitting and prediction. We put the PBD model to test on a large-scale high-frequency pairs trading application, using SP 500 minute-by-minute data from 1998 to 2016. After accounting for execution limitations (waiting rule, volume constraints, and short-selling fees) the PBD model yields statistically significant and economically meaningful annual returns after transaction costs of 9.16 percent. These returns can only partially be explained by the exposure to common risk. In addition, the model is superior in terms of risk-return metrics. The model performs very well in bear markets. We quantify the impact of execution limitations on risk and return measures by relaxing backtesting restrictions step-by-step. If no restrictions are imposed, we find annual returns after costs of 138.6 percent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.