Abstract
The largest piezoelectric properties, d33 = 416 pC/N and 490 pC/N, in KxNa1-xNbO3 ceramics have been reported for compositions close to polymorphic phase transition (PPT); however, they also have Curie temperatures, TC, of around 217-304 °C, considerably lower than those of undoped KNN ceramics (420 °C). High d33 along with high TC remains the ideal choice for applications but, unfortunately, not attained up to now. Here, we show that using KNN single crystals as seeds for template grain growth (TGG) of KNN ceramics enables dramatic improvements in the electromechanical properties while maintaining a high TC. The (001)-oriented (K0.5Na0.5)0.98Li0.02NbO3 ceramics engineered by TGG using (K0.5Na0.5)NbO3 crystals as templates exhibit a high d33 of 280 pC/N while maintaining the high TC of 430 °C. Enhanced piezoelectricity is attributed to long-range ordered ferroelectric domain patterns consisting of 90° and 180° domains, similar to single crystals. It is the first time that pairing high d33 and high TC in KNN, keeping a high PPT temperature, is achieved. This study is an unequivocal proof that it is possible to maximize d33, keeping a high TC in KNN without resorting to heavily doped compositions. This work opens the door to high-performance, rare-earth free, compositionally simple lead-free and low-cost electromechanical compounds, which can largely expand lead-free piezoelectrics applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.