Abstract

AimsVascular smooth muscle cells (VSMCs) play a crucial role in the progression of atherosclerosis. Paired box 9 (Pax9) is a member of the Pax gene family which participates in the development of various tissues and organs. However, the effect of Pax9 on atherosclerosis and VSMCs and the underlying mechanisms remain unclear. Main methodsWestern blotting was performed to assess Pax9 expression in atherosclerosis and VSMCs. Pax9 siRNA and overexpression plasmid were constructed to explore the biological function. Cell proliferation assay, phalloidin staining, and Transwell assay, accompanied by the sonic hedgehog (Shh) signaling pathway antagonist, cyclopamine (5 μM) and agonist, SAG (100 nM), were used to evaluate the VSMC phenotype, proliferation, and migration, as well as explore the associated mechanisms. Key findingsWe first discovered Pax9 to be significantly increased in atherosclerotic mice and platelet-derived growth factor-BB (PDGF-BB)-induced VSMCs. Pax9 knockdown inhibited the phenotypic transformation, proliferation, and migration of VSMCs, whereas the opposite effect was observed when Pax9 was overexpressed. Next, we established that Shh was activated in PDGF-BB-induced VSMCs. Moreover, Pax9 overexpression further activated Shh and exacerbated the phenotypic transformation, proliferation, and migration of PDGF-BB-induced VSMCs. These changes were effectively inhibited by treatment with the Shh signaling pathway antagonist. Consistently, Pax9 knockdown down-regulated Shh expression and inhibited the phenotypic transformation, proliferation, and migration of PDGF-BB-induced VSMCs. Treatment with the Shh signaling pathway agonist prevented these changes. SignificancePax9 regulated VSMC phenotypic transformation, proliferation, and migration via Shh, which may represent a novel target for the treatment of atherosclerosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.