Abstract

The six Painlevé equations were introduced over a century ago, motivated by rather theoretical considerations. Over the last several decades, these equations and their solutions, known as the Painlevé transcendents, have been found to play an increasingly central role in numerous areas of mathematical physics. Due to extensive dense pole fields in the complex plane, their numerical evaluation remained challenging until the recent introduction of a fast ‘pole field solver’ (Fornberg and Weideman, 2011). The fourth Painlevé equation has two free parameters in its coefficients, as well as two free initial conditions. After summarizing key analytical results for PIV, the present study applies this new computational tool to the fundamental domain and a surrounding region of the parameter space. We confirm existing analytic and asymptotic knowledge about the equation and also explore solution regimes which have not been described in the previous literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.