Abstract
Using the Painlev\'{e} analysis, we investigate the integrability properties of a system of two coupled nonlinear Schr\"{o}dinger equations that describe the propagation of orthogonally polarized optical waves in an isotropic medium. Besides the well-known integrable vector nonlinear Schr\"{o}dinger equation, we show that there exist a new set of equations passing the Painlev\'{e} test where the self and cross phase modulational terms are of different magnitude. We introduce the Hirota bilinearization and the B\"{a}cklund transformation to obtain soliton solutions and prove integrability by making a change of variables. The conditions on the third-order susceptibility tensor $\chi^{(3)} $ imposed by these new integrable equations are explained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.