Abstract

A new technique is explained to study the propagation of inhomogeneous waves in a general anisotropic medium. The harmonic plane waves are considered in a viscoelastic anisotropic medium. The complex slowness vector is decomposed into propagation vector and attenuation vector for the given directions of propagation and attenuation of waves in an unbounded medium. The attenuation is further separated into the contributions from homogeneous and inhomogeneous waves. A non-dimensional inhomogeneity parameter is defined to represent the deviation of an inhomogeneous wave from its homogeneous version. Such a partition of slowness vector of a plane wave is obtained with the help of an algebraic method for solving a cubic equation and a numerical method for solving a real transcendental equation. Derived specifications enable to study the 3D propagation of inhomogeneous plane waves in a viscoelastic medium of arbitrary anisotropy. The whole procedure is wave-specific and obtains the propagation characteristics for each of the three inhomogeneous waves in the anisotropic medium. Numerical examples analyze the variations in propagation characteristics of each of the three waves with propagation direction and inhomogeneity strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call