Abstract

The island paradigm for the fine-grained entropy of Hawking radiation is applied to eternal charged accelerating black holes. In the absence of the island, the entanglement entropy grows linearly and divergent at late times, while once the island outside the event horizon is taken into account, the unitary Page curve is reproduced naturally. The impact of the charge and the acceleration on Page curves is investigated at late times. For the Page time and the scrambling time, they both increase as the acceleration increases, while decreasing as the charge increases. In particular, neutral black holes have the largest Page time and scrambling time. It is worth noting that the Page time and the scrambling time is divergent at the extremal case, which implies that islands may be related to the causal structure of spacetime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call