Abstract

Neuropathic pain is frequently comorbid with sleep disturbances. Paeoniflorin, a main active compound of total glucosides of paeony, has been well documented to exhibit neuroprotective bioactivity. The present study evaluated effects of paeoniflorin on neuropathic pain and associated insomnia and the mechanisms involved. The analgesic and hypnotic effects of paeoniflorin were measured by mechanical threshold and thermal latency, electroencephalogram (EEG) and electromyogram, and c-Fos expression in a neuropathic pain insomnia model. The data revealed that paeoniflorin (50 or 100mg/kg, i.p.) significantly increased the mechanical threshold and prolonged the thermal latency in partial sciatic nerve ligation (PSNL) mice. Meanwhile, paeoniflorin increased non-rapid eye movement (NREM) sleep amount and concomitantly decreased wakefulness time. However, pretreatment with l,3-dimethy-8-cyclopenthylxanthine, an adenosine A1 receptor (R, A1R) antagonist, abolished the analgesic and hypnotic effects of paeoniflorin. Moreover, paeoniflorin at 100mg/kg failed to change mechanical threshold and thermal latency and NREM sleep in A1R knockout PSNL mice. Immunohistochemical study showed that paeoniflorin inhibited c-Fos overexpression induced by PSNL in the anterior cingulate cortex and ventrolateral periaqueductal gray. The present findings indicated that paeoniflorin exerted analgesic and hypnotic effects via adenosine A1Rs and might be of potential use in the treatment of neuropathic pain and associated insomnia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.