Abstract
In wafer polishing pad surface plays a crucial role in the polishing process. With the increase of friction time between pad and wafer, the pad becomes flattened or glazed with particles clogging the pores of the pad and forming a layer of slurry residue and wafer particles, leading to changes of COF, material removal rates and higher defects on the wafer surface. Thus, this study aims to determine the correlation between pad surface deformation, slurry adhesive rate and Coefficient of friction (COF) during friction between felt pad and single -crystal silicon, to analyze the relationship between pad condition and COF. The real-time COF between felt pad and single-crystal silicon wafer are tested which are sorted in groups depending on various loads and oscillation frequencies and surfaces of felt pads measuring by Scanning electron microscope (SEM) are compared. The correlation between pad surface deformation and abrasive adhesion and COF is evaluated through analyzing the experiment results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.