Abstract
A distributed control plane is more scalable and robust in software defined networking. This paper focuses on controller load balancing using packet-in request redirection, that is, given the instantaneous state of the system, determining whether to redirect packet-in requests for each switch, such that the overall control plane response time (CPRT) is minimized. To address the above problem, we propose a framework based on Lyapunov optimization. First, we use the drift-plus-penalty algorithm to combine CPRT minimization problem with controller capacity constraints, and further derive a non-linear program, whose optimal solution is obtained with brute force using standard linearization techniques. Second, we present a greedy strategy to efficiently obtain a solution with a bounded approximation ratio. Third, we reformulate the program as a problem of maximizing a non-monotone submodular function subject to matroid constraints. We implement a controller prototype for packet-in request redirection, and conduct trace-driven simulations to validate our theoretical results. The results show that our algorithms can reduce the average CPRT by 81.6% compared to static assignment, and achieve a 3× improvement in maximum controller capacity violation ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.