Abstract

Future networks should carry several types of traffic in a dynamical manner. Predominantly, optical networks could provide sufficiently high bandwidth for future bandwidth-intensive applications. Particularly, the packet-interleaved optical time division multiplexing (OTDM) technology could be a promising candidate for future high-dynamical and high-capacity photonic networks. In this paper, photonic networks employing rate-conversion of data packets in the optical domain are addressed, thereby achieving a high bit-rate access to the optical medium on a packet-by-packet basis. Two rate-conversion methods including the compression/expansion loop and the optical delay line structure are discussed and compared relating to the power budget and the optical signal-to-noise ratio. Moreover, a scalable optical packet rate-conversion unit is proposed and investigated by means of numerical simulations. The impact of the “time-out” phenomenon on the network performance and especially the improvement of the transmission efficiency and the average packet transfer delay by using the proposed scheme are shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call