Abstract
This paper proposes a real-time allocation scheme for photonic networks that use wavelength division multiplexing (WDM) and optical time division multiplexing (OTDM) technologies in the backbone and ring regional networks, respectively. A frame that is used for transferring data and control information in a ring regional network takes only one round to complete data allocation processing, instead of two rounds as required by the prior reservation scheme, so that data can be transmitted immediately. Our challenge is to provide max-min fair share in terms of throughput with just one round. If no free space is left on the frame, the proposed scheme allows a group (some) of the newly requested data to replace some of the already allocated data to provide max-min fair share, in terms of throughput. Data replacement and de-fragmentation are processed in the optical domain. Simulations show that the proposed scheme maintains max-min fair share even in unbalanced traffic scenarios. The complexity of de-fragmentation depends on the number of delay lines needed to regenerate the original data groups. The maximum number of delay lines is determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.