Abstract

Electrical pacing at physiological rate induces myocardial remodeling associated with regional changes in workload, blood flow and oxygen consumption. However, to what extent energy-producing pathways are also modified within the paced heart remains to be investigated. Pacing could particularly affect glycogen metabolism since hypertrophy stimulates glycolysis and increased workload favors glucose over fat oxidation. In order to test this hypothesis, we used the embryonic chick heart model in which ventricular pacing rapidly resulted in thinning of the ventricle wall and thickening of the atrial wall. Hearts of stage 22HH chick embryos were submitted in ovo to asynchronous and intermittent ventricular pacing delivered at physiological rate during 24 h. The resulting alterations of glycogen content were determined in atrium, ventricle and conotruncus of paced and sham-operated hearts. Hemodynamic parameters of the paced and spontaneously beating hearts were derived from computerized image analysis of video recordings. With respect to sham, paced hearts showed a significant decrease in glycogen content (nmoles glucose units/μ g protein; mean±S.D.) only in atrium (1.48±0.40 v 0.84±0.34, n=8) and conotruncus (0.75±0.28 v 0.42±0.23, n=8). Pacing decreased the end diastolic and stroke volumes by 34 and 44%, respectively. Thus, the rapid glycogen depletion in regions remote from the stimulation site appears to be associated with regional changes in workload and remodeling. These findings underscore the importance of the coupling mechanisms between metabolic pathways and myocardial remodeling in the ectopically paced heart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.