Abstract
The onset of SARS-CoV-2 infection in 2019 sparked a global COVID-19 pandemic. This infection is marked by a significant rise in both viral and host kinase activity. Our primary objective was to identify a pivotal host kinase essential for COVID-19 infection and the associated phenomenon of the cytokine storm, which may lead to long-term COVID-19 complications irrespective of viral genetic variations. To achieve this, our study tracked kinase phosphorylation dynamics in RAW264.7 macrophages following SPIKE transfection over time. Among the kinases surveyed, p70S6K (RPS6KB1) exhibited a 3.5-fold increase in phosphorylation at S418. This significant change prompted the selection of p70S6K for in silico investigation, utilizing its structure bound to M2698 (PDB: 7N93). M2698, an oral dual Akt/p70S6K inhibitor with an IC50 of 1.1 nM, exhibited psychosis side effects in phase I clinical trials, potentially linked to its interaction with Akt2. Our secondary objective was to discover a small-molecule analogue of M2698 that exhibits a distinct binding preference for p70S6K over Akt2 through computational modeling and analysis. The in silico part of our project began with validating the prediction accuracy of the docking algorithm, followed by an OCA analysis pinpointing specific atoms on M2698 that could be modified to enhance selectivity. Subsequently, our investigation led to the identification of an analog of M2698, designated as S34, that showed a superior docking score towards p70S6K compared to Akt2. To further assess the stability of S34 in its protein-ligand (PL) complexes with p70S6K and Akt2, MD simulations were conducted. These simulations suggest that S34, on average, forms two hydrogen bond interactions with p70S6K, whereas it only forms one hydrogen bond interaction with Akt2. This difference in hydrogen bond interactions likely contributed to the observed larger root mean square deviation (RMSD) of 0.3 nm in the S34-Akt2 complex, compared to 0.1 nm in the S34-p70S6K complex. Additionally, we calculated free binding energy to predict the strength of the binding interactions of S34 to p70S6K and Akt2, which showed ~2-fold favorable binding affinity of S34 in the p70S6K binding pocket compared to that in the Akt2 binding pocket. These observations may suggest that the S34-p70S6K complex is more stable than the S34-Akt2 complex. Our work focused on identifying a host kinase target and predicting the binding affinity of a novel small molecule to accelerate the development of effective treatments. The wet bench results specifically highlight p70S6K as a compelling anti-COVID-19 target. Meanwhile, our in silico investigations address the known off-target effects associated with M2698 by identifying a close analog called S34. In conclusion, this study presents novel and intriguing findings that could potentially lead to clinical applications with further investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.