Abstract
The tumor suppressor protein, p53, utilizes multiple mechanisms to ensure faithful transmission of the genome including regulation of DNA replication, repair, and recombination. Monitoring these pathways may involve direct binding of p53 to the DNA intermediates of these processes. In this study, we generated templates resembling stalled replication forks and utilized electron microscopy to examine p53 interactions with these substrates. Our results show that p53 bound with high affinity to the junction of stalled forks, whereas two cancer-derived p53 mutants showed weak binding. Additionally, some of the templates were rearranged to form "chickenfoot" structures in the presence of p53. These were mostly formed due to p53 trapping intermediates of spontaneous fork regression; however, in a small population, the protein appeared to be promoting their formation. Collectively, these results demonstrate the importance of sequence-independent binding in p53-mediated maintenance of genomic integrity.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have