Abstract
Tumour suppressor p53 has been shown to inhibit fibroblast growth factor 2 expression post-transcriptionally in cultured cells. Here we have investigated the mechanism responsible for this post-transcriptional blockade. Deletion mutagenesis of the FGF-2 mRNA leader revealed the requirement of at least four RNA cis-acting elements to mediate the inhibitory effect of p53 in SK-Hep-1 transfected cells, suggesting the involvement of RNA secondary or tertiary structures. Recombinant wild-type, but not Ala(143) mutant p53, was able to specifically repress FGF-2 mRNA translation in rabbit reticulocyte lysate, in a dose dependent manner. Sucrose gradient experiments showed that p53 blocks translation initiation by preventing 80S ribosome formation on an mRNA bearing the FGF-2 mRNA leader sequence. Interaction of wild-type and mutant p53 with different RNAs showed no significant correlation between p53 RNA binding activity and its translational inhibiting effect. However, by checking the accessibility of the FGF-2 mRNA leader to complementary oligonucleotide probes, we showed that the binding to RNA of wild-type, but not mutant p53, induced RNA conformational changes that might be responsible for the translational blockade. This strongly suggests that p53 represses FGF-2 mRNA translation by a direct mechanism involving its nucleic acid unwinding-annealing activity.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have