Abstract

The sequence-specific binding to DNA is crucial for the p53 tumor suppressor function. To investigate the constraints imposed on p53-DNA recognition by nucleosomal organization, we studied binding of the p53 DNA binding domain (p53DBD) and full-length wild-type p53 protein to a single p53 response element (p53RE) placed near the nucleosomal dyad in six rotational settings. We demonstrate that the strongest p53 binding occurs when the p53RE in the nucleosome is bent in the same direction as observed for the p53-DNA complexes in solution and in co-crystals. The p53RE becomes inaccessible, however, if its orientation in the core particle is changed by approximately 180 degrees. Our observations indicate that the orientation of the binding sites on a nucleosome may play a significant role in the initial p53-DNA recognition and subsequent cofactor recruitment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.