Abstract
Caveolin-1 is a principal component of caveolae membranes in vivo. Caveolin-1 mRNA and protein expression are down-regulated in NIH 3T3 cells in response to transformation by activated oncogenes, such as H-Ras(G12V) and v-Abl. The mechanisms governing this down-regulation event remain unknown. Here, we show that caveolin-1 gene expression is directly regulated by activation of the Ras-p42/44 MAP kinase cascade. Down regulation of caveolin-1 protein expression by Ras is independent of (i) the type of activating mutation (G12V versus Q61L) and (ii) the form of activated Ras transfected (H-Ras versus K-Ras versus N-Ras). Treatment of Ras or Raf-transformed NIH 3T3 cells with a well characterized MEK inhibitor (PD 98059) restores caveolin-1 protein expression. In contrast, treatment of v-Src and v-Abl transformed NIH 3T3 cells with PD 98059 does not restore caveolin-1 expression. Thus, there must be at least two pathways for down-regulating caveolin-1 expression: one that is p42/44 MAP kinase-dependent and another that is p42/44 MAP kinase-independent. We focused our efforts on the p42/44 MAP kinase-dependent pathway. The activity of a panel of caveolin-1 promoter constructs was evaluated using transient expression in H-Ras(G12V) transformed NIH 3T3 cells. We show that caveolin-1 promoter activity is up-regulated approximately 5-fold by inhibition of the p42/44 MAP kinase cascade. Using electrophoretic mobility shift assays we provide evidence that the caveolin-1 promoter (from -156 to -561) is differentially bound by transcription factors in normal and H-Ras(G12V)-transformed cells. We also show that activation of protein kinase A (PKA) signaling is sufficient to down-regulate caveolin-1 protein expression and promoter activity. Thus, we have identified two signaling pathways (Ras-p42/44 MAP kinase and PKA) that transcriptionally down-regulate caveolin-1 gene expression.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have