Abstract
New efficient hole‐transport material (HTM) composites based on low‐cost easy‐preparation non‐peripheral octamethyl‐substituted copper (II) phthalocyanine (N‐CuMe2Pc) nanowire and poly(3‐hexylthiophene) (P3HT) are developed for CH3NH3PbI3 (MAPbI3)‐based perovskite solar cells (PSCs). Compared with pristine P3HT, the prepared nanocomposite HTMs provided thin films with better qualities and reduced trap densities, and exhibited higher hole mobilities and well‐matched energy levels with the perovskite layer. Depending on the ratio of the two components, the power conversion efficiency (PCE) reached up to 16.61%, which is higher than the efficiency of the standard device based on doped spiro‐OMeTAD (16.13%). Moreover, the long‐term stability of the PSCs is also improving greatly. The best performing devices based on P1C1 HTM retained 90% of their initial efficiencies after 800 h of storage with a relative humidity of 75%. These results indicate N‐CuMe2Pc nanowire/P3HT nanocomposites can be an effective HTM to realize superior performance in PSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.