Abstract

In the passive Heymann nephritis (PHN) model of rat membranous nephropathy, complement C5b-9 causes sublytic injury of glomerular epithelial cells (GEC). We previously showed that sublytic concentration of C5b-9 triggers a variety of biological events in GEC. In the current study, we demonstrate that complement activates p38 MAPK in GEC and address the role of p38 in complement-mediated cell injury. When cultured rat GEC were stimulated with complement, p38 kinase activity and phosphorylation were increased by approximately 2.4-fold, compared with control. Treatment with p38 inhibitors significantly augmented complement-mediated cytotoxicity. In contrast, when the constitutively active mutant of transforming growth factor-beta-activated kinase 1 (TAK1), a kinase upstream of p38, was expressed in GEC in an inducible manner, cytotoxicity was significantly reduced, compared with uninduced cells. p38 inhibitors abolished the protective effect of TAK1 expression. By analogy to cultured cells, p38 activity was also increased in glomeruli from rats with PHN and treatment with the p38 inhibitor FR-167653 increased proteinuria. Complement induced phosphorylation of MAPK-associated protein kinase-2 (MAPKAPK-2), a kinase downstream of p38 in GEC. Heat shock protein (HSP27) is a cytoskeleton-interacting substrate of MAPKAPK-2. Overexpression of the wild-type HSP27, but not a non-phosphorylatable mutant, markedly reduced complement-mediated GEC injury. In summary, complement activates p38 MAPK in GEC in vitro and in glomeruli from rats with PHN. The activation of p38 MAPK appears to be cytoprotective for GEC against complement-mediated GEC injury. Phosphorylation of HSP27 may mediate this cytoprotection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call