Abstract

Membranous nephropathy is a disease that affects the filtering units of the kidney, the glomeruli, and results in proteinuria accompanied by loss of kidney function. Passive Heymann nephritis is an experimental model that mimics membranous nephropathy in humans, wherein the glomerular epithelial cell (GEC) injury induced by complement C5b-9 leads to proteinuria. We examined the role of cytochrome P450 2B1 (CYP2B1) in this complement-mediated sublytic injury. Overexpression of CYP2B1 in GECs significantly increased the formation of reactive oxygen species, cytotoxicity, and collapse of the actin cytoskeleton following treatment with anti-tubular brush-border antiserum (anti-Fx1A). In contrast, silencing of CYP2B1 markedly attenuated anti-Fx1A-induced reactive oxygen species generation and cytotoxicity with preservation of the actin cytoskeleton. Gelsolin, which maintains an organized actin cytoskeleton, was significantly decreased by complement C5b-9-mediated injury but was preserved in CYP2B1-silenced cells. In rats injected with anti-Fx1A, the cytochrome P450 inhibitor cimetidine blocked an increase in catalytic iron and ROS generation, reduced the formation of malondialdehyde adducts, maintained a normal distribution of nephrin in the glomeruli, and provided significant protection at the onset of proteinuria. Thus, GEC CYP2B1 contributes to complement C5b-9-mediated injury and plays an important role in the pathogenesis of passive Heymann nephritis.

Highlights

  • These results suggest that complement-mediated loss of cytochrome P450 2B1 (CYP2B1) protein is a translational or post-translational event

  • In Passive Heymann nephritis (PHN), complement activation and localization of the membrane attack complex (MAC) in subepithelial deposits result in sublytic damage to the glomerular epithelial cell (GEC), followed by development of proteinuria 3– 4 days after the injection of anti-Fx1A (40, 41)

  • Incubation of GECs overexpressing CYP2B1 with anti-Fx1A resulted in a significant increase in Reactive oxygen species (ROS) generation and cytotoxicity

Read more

Summary

Introduction

CYP2B1 gene silencing resulted in a significant decrease in CYP2B1 mRNA and protein by ϳ65% (21) and prevented the increase in complement-mediated H2O2 generation and cytotoxicity (LDH release) compared with scrambled or negative siRNA-transfected cells (Fig. 1, C and D). Treatment of GECs infected with a negative adenovirus with anti-Fx1A increased cell membrane permeability as demonstrated by the increase in red fluorescence in cells in the presence of FHS, but not HIS (Fig. 3, A and B).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call