Abstract

Objective The objective of the investigation was to document the in vitro efficacy of a triclosan/PVM/MA copolymer/fluoride (TCF) dentifrice against the formation of volatile sulfur compounds (VSC) as well as the growth of H2S‐producing bacteria. Clinical studies using organoleptic judges, gas chromatography, or a portable sulfide monitor have generally been employed in the assessment of treatments for the control of oral malodor. However, these studies are not appropriate for screening purposes because of the expense and time required.Methods An in vitro method was developed for the purpose of screening new technologies for their ability to control VSC formation and for determining bio‐equivalence of efficacy when implementing changes in existing formulations. The method combines basic microbiological methods, dynamic flow cell techniques and head space analysis. The in vitro VSC method was validated by comparing the efficacy of two dentifrices containing TCF with a control fluoride dentifrice as the TCF products have been clinically proven to control oral malodor.Results In the validation studies, the TCF‐containing dentifrices were significantly better (P < 0.05) than the control dentifrice in inhibiting VSC formation and reducing H2S‐producing bacteria. For example, when compared to baseline, the TCF dentifrices reduced VSC formation between 42 and 49% compared to the control dentifrice which reduced VSC formation 3%. There was no significant difference (P > 0.05) between the two TCF dentifrices.Conclusion Using an in vitro breath VSC model, it has been demonstrated that two variants of a dentifrice containing triclosan, PVM/MA copolymer and fluoride have efficacy that is significantly better than a control fluoridated dentifrice and that there is no significant difference between the triclosan/PVM/MA copolymer/fluoride dentifrice variants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.