Abstract
Few new therapeutics exist to target airway inflammation in mild-to-moderate asthma. Alveolar macrophages regulate airway inflammation by producing proresolving eicosanoids. We hypothesized that stimulation of the purinergic receptor P2X7 in macrophages from individuals with asthma produces eicosanoids associated with airway inflammation and resolution, and that these responses are predicted, in part, by P2X7 pore function. Study subjects were recruited in an Institutional Review Board (IRB)-approved study. Alveolar macrophages were recovered from bronchoalveolar lavage fluid following bronchoscopy. Purinergic receptor classification was performed using flow cytometry and fluorescent cell assay. Macrophages were stimulated in vitro and eicosanoids were measured via ELISA or enzyme immunoassay (EIA) in the presence and absence of P2X7-specific agonist [2'(3')-O-(4-Benzoylbenzoyl)adenosine-5'-triphosphate tri(triethylammonium) salt (Bz-ATP)] and antagonist (AZD9056). Functional P2X7 pore status was confirmed in a live cell assay using P2X7-specific agonists and antagonists. Alveolar macrophages produced increased quantities of the oxylipins lipoxin A4 (LXA4), resolvin D1 (RvD1), and 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) following stimulation with Bz-ATP compared with vehicle controls, responses that were attenuated in the presence of the P2X7-selective antagonist, AZD9056. LXA4 and RvD1 production was greatest at 1 h, whereas 15(S)-HETE was maximally produced 24 h. Prostaglandin E-2 and resolvin E1 were minimally produced by P2X7 activation, indicating differential signaling pathways involved in eicosanoid production in alveolar macrophages derived from individuals with asthma. The early production of the proresolving eicosanoids, LXA4 and resolvin D1, is regulated by P2X7, whereas generation of the proinflammatory eicosanoid, 15(S)-HETE, is only partially regulated through P2X7 signaling and reaches maximal production after the peak in proresolving eicosanoids.NEW & NOTEWORTHY Alveolar macrophages obtained from individuals with asthma produce soluble lipid mediators in response to P2X7 purinergic receptor signaling. Proinflammatory mediators may contribute to asthma exacerbations but proresolving mediators may help with resolution of asthma loss of control. These specialized proresolving lipid mediators may serve as future potential therapeutics for asthma exacerbation resolution and recovery.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have