Abstract
Early-life seizures, particularly when prolonged, may be harmful to the brain. Current pharmacotherapy is often ineffective; therefore, novel neuro- and/or glio-transmitter systems should be explored for targeting. The P2X7 receptor is a cation-permeable channel with trophic and excitability effects on neurons and glia which is activated by high amounts of ATP that may be released in the setting of injury after severe seizures. Here, we tested the effects of A-438079, a potent and selective P2X7 receptor antagonist in a lesional model of early-life status epilepticus. Seizures were induced by intra-amygdala kainic acid in 10-day-old rat pups. Electrographic seizure severity, changes to P2X7 receptor expression, inflammatory responses and histological effects were evaluated. Seizures induced by intra-amygdala kainic acid increased levels of P2X7 receptor protein and interleukin-1β and caused significant cell death within the ipsilateral hippocampus. A-438079 rapidly reached the brain following systemic injection in P10 rats. Intraperitoneal injection of A-438079 (5 and 15 mg/kg) 60 min after triggering seizures reduced seizure severity and neuronal death within the hippocampus. A-438079 had superior neuroprotective effects compared with an equally seizure-suppressive dose of phenobarbital (25 mg/kg). These results suggest P2X7 receptor antagonists may be suitable as frontline or adjunctive treatments of pediatric status epilepticus or other early-life seizures, particularly when associated with brain damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.