Abstract
AbstractThe unprecedented growth and increased importance of geographically distributed spatial data has created a strong need for efficient sharing of such data. Interestingly, the ever-increasing popularity of peer-to-peer (P2P) systems has opened exciting possibilities for such sharing. This motivates our investigation into spatial indexing in P2P systems. While much work has been done towards expediting search in file-sharing P2P systems, issues concerning spatial indexing in P2P systems are significantly more complicated due to overlaps between spatial objects and the complexity of spatial queries. Incidentally, existing R-tree-based structures for distributed environments (e.g., the MC-Rtree) are not adequate for addressing the sheer scale, dynamism and heterogeneity of P2P environments. Hence, we propose the P2PR-tree (Peer-to-Peer R-tree), which is a new spatial index specifically designed for P2P systems. The main features of P2PR-tree are two-fold. First, it is hierarchical and performs efficient pruning of the search space by maintaining minimal amount of information concerning peers that are far away and storing more information concerning nearby peers, thereby optimizing disk space usage. Second, it is completely decentralized, scalable and robust to peers joining/leaving the system. The results of our performance evaluation demonstrate that it is indeed practically feasible to share spatial data in a P2P system and that P2PR-tree is able to outperform MC-Rtree significantly.KeywordsSpatial indexingP2P systemsR-treescaledynamism
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have