Abstract

For full-field optical 3D measurement systems, camera noise is the dominant uncertainty factor when optically cooperative surfaces are measured in a stable and controlled environment. In industrial applications repeated measurements are seldom executed for this kind of measurement systems. This leads to statistically suboptimal results in subsequent evaluation steps as the important information about the quality of individual measurement points is lost. In this work it will be shown that this information can be recovered for phase measuring optical systems with a model-based noise prediction. The capability of this approach will be demonstrated exemplarily for a fringe projection system and it will be shown that this method is indeed able to generate an individual estimate for the spatial stochastic deviations resulting from image sensor noise for each measurement point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.