Abstract

Four-dimensional (4D) (3D+time) measurement systems make it possible today to measure objects while moving and deforming. One of the fields where 4D systems prove themselves useful is medicine--particularly orthopedics and neural sciences--where measurement results may be used to estimate dynamic parameters of a patient's movement. Relatively new in 4D, optical full-field shape measurement systems capture more data than standard marker-based systems and open new ways for clinical diagnosis. However, before this is possible, the appropriate 4D data processing and analysis methods need to be developed. We present a new data analysis path for 4D data input as well as new shape parameters describing local features of a surface. The developed shape parameters are easier and quicker to calculate than standard surface parameters, such as curvatures, but they give results that are very similar to the latter. The presented 4D data analysis path allows characteristic areas on the body, so-called anatomical landmarks, to be located and traces them in time along the measurement sequence. We also present the general concepts and describe selected steps of the developed 4D data analysis path. The algorithms were implemented and tested on real and computer-generated data representing the surface of lower limbs. Finally, we give sample processing and analysis results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.