Abstract
Abstract Background and purpose Mechanosensitive hTREK-1 (hK2P2.1) two-pore-domain potassium channels give rise to background currents that control resting membrane potential in excitable tissue. Recently TREK-1 currents have been linked to regulation of cardiac rhythm as well as hypertrophy and fibrosis. Even though pharmacological and biophysical characteristics of hTREK-1 channels have been widely studied, less is known about its posttranslational modifications. This study aims to evaluate whether hTREK-1 channels are N-glycosylated and whether glycosylation may affect channel functionality. Experimental approach Following pharmacological inhibition of N glycosylation, enzymatic digestion or mutagenesis, immunoblots of Xenopus laevis oocytes and HEK-233T cell lysates were used to assess electrophoretic mobility. Two-electrode voltage clamp measurements were employed to study channel function. Key results TREK-1 channels subunits undergo N-glycosylation at asparagine residues 110 and 134. The presence of sugar moieties at these two sites increases channel function. Detection of glycosylation-deficient mutant channels in surface fractions and recordings of macroscopic potassium currents mediated by these subunits demonstrate that non-glycosylated hTREK-1 channels subunits are able to reach the cell surface in general, but seemingly with reduced efficiency. Conclusion and implications hTREK-1 are glycoproteins and N glycosylation at positions 110 and 134 is involved in channel surface trafficking. These findings extend our view on regulation of hTREK-1 currents by posttranslational modifications and provide novel insights into how glycosylation deficiency disorders may promote arrhythmogenesis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have