Abstract
Abstract Background: Individual therapy efficiency of HER2−positive metastatic and pre-metastatic breast cancer patients varies significantly and spans from effectual responsiveness over acquired insensitivity to complete resistance from the outset. Thus no predictive information can be deduced from HER2 diagnostics so that molecular biomarkers indicative for sensitivity / resistance to Herceptin are needed to be identified. The HER2 related HER4-receptor has been shown to have ambivalent (pro-apoptotic or pro-proliferative) activity and consequently represents a prime candidate to affect HER2 activity under Herceptin treatment. We retrospectively analyzed potential her4 gene amplification and HER4 protein expression in HER2−positive, Herceptin treated patients. Patient's overall and recurrence free survival was evaluated as a function of HER2/HER4 expression. Methods: Using dual color Fluorescence in-situ Hybridization (FISH probes, Zytovision, Bremerhaven, Germany) and qPCR (LC480, Roche, Penzberg, Germany) we quantitatively investigated primary breast cancer tissues from nearly 50 (FISH) and 160 (PCR) patients who received Herceptin treatment. We quantified the her4 gene copy numbers and evaluated the protein expression profile of all four known HER4 isotypes (JM-a/CYT1, JM-a/CYT2, JM-b/CYT1, JM-b/CYT2). Results: FISH analysis revealed a positive and independent prognostic marker in Herceptin treated breast cancer patients with respect to overall survival. Moreover by quantitative PCR analysis we found a significant variability of HER4 protein expression (JM-a/CYT1 and JM-a/CYT2; no JM-b isotypes) in HER2 positive breast cancer tissues, whereas HER2/HER4 positive patients show a significant better recurrence free survival compared to HER2 positive but HER4 negative patients (p = 0,003). Conclusions: HER4 has been demonstrated to potentially exert tumor suppressing activity and in turn to have a favourable impact on the course of breast cancer disease. We show here that HER4 expression prolongs in particular recurrence free survival of Herceptin treated patients which indicates a functional integration of HER4 into anti-HER2 targeting. Complementing functional studies allowing for isotype specific function of HER4 will elucidate the special role of this receptor tyrosine kinase in the context of Herceptin treatment and might facilitate individualized anti-ErbB-receptor targeting with higher efficiency. Citation Information: Cancer Res 2011;71(24 Suppl):Abstract nr P1-12-23.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.