Abstract

AbstractMycorrhizas are ubiquitous symbioses that may have an important role in the movement of C from air to soil. Studies on the effects of climate change factors on mycorrhizas have been concentrated on the effects of atmospheric [CO2] whereas temperature effects have been neglected. Based on previous results showing no effect of varying atmospheric [CO2] on the development and P uptake of the arbuscular mycorrhizal fungi (AMF) colonizing plants growing in controlled conditions, we hypothesized that soil temperature would have a higher impact on AMF development and nutrient uptake than the effects of [CO2] on the host plant. Pea plants were grown in association with either a single isolate of Glomus caledonium or AMF from field soil in factorial combination with the corresponding current (10 °C) or elevated (15 °C) soil temperatures at current (350 p.p.m) or elevated (700 p.p.m) atmospheric [CO2]. 33P uptake by extraradical AMF hyphae was measured independently from root P uptake in a root exclusion compartment. Intraradical colonization developed well at both soil temperatures and almost duplicated from 10 to 15 °C. Extraradical mycelium developed only at 15 °C in the root exclusion compartment and hyphal P uptake could therefore be studied at 15 °C only. Hyphal P uptake differed markedly between inoculum types, but was not altered by growing the host plants at two atmospheric [CO2] levels. No significant [CO2] × soil temperature interactions were observed. The results suggested that, in the system tested, AMF development and function is likely more influenced by the temperature component of climate change than by its [CO2] component. We suggest that much more attention should be paid to temperature effects in future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.