Abstract

The preparation by magnetron sputtering of p-type semiconducting thin films consisting of a multicomponent oxide composed of Cu oxide and Co oxide is described. The electrical, optical, and crystallographical properties of films deposited by rf magnetron sputtering using (Cu2O)1−x–(CoO)x powder targets were strongly dependent on not only the deposition condition but also the calcination condition as well as the CoO content of the targets. These properties drastically changed in films prepared with a CoO content around 90 mol %. All prepared films, i.e., CoO content in the range from 0 to 100 mol %, were found to be p type, or positive hole conductors, as evidenced from the Seebeck effect: Resistivities in the range from 103 to 10−3 Ω cm. A hole concentration on the order of 1016 cm−3 and a mobility on the order of 10−1 cm2/V s were obtained in an amorphous multicomponent oxide film prepared with a CoO content of 50 mol %. Fabricated thin-film pin heterojunction diodes consisting of a p-type high-resistance multicomponent oxide combined with undoped ZnO and n-type Al-doped ZnO exhibited a rectifying current–voltage characteristic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.