Abstract

The adhesive mechanisms regulating leucocyte-endothelium interactions in the pancreas remain elusive, but selectins may play a role. This study examined the molecular mechanisms mediating leucocyte rolling along the endothelium in the pancreas and the therapeutic potential of targeting the rolling adhesive interaction in acute pancreatitis (AP). Pancreatitis was induced by retrograde infusion of 5 per cent sodium taurocholate into the pancreatic duct, repeated intraperitoneal administration of caerulein (50 µg/kg) or intraperitoneal administration of L-arginine (4 g/kg) in C57BL/6 mice. A control and a monoclonal antibody against P-selectin were administered before and after induction of AP. Serum and tissue were sampled to assess the severity of pancreatitis, and intravital microscopy was used to study leucocyte rolling. Taurocholate infusion into the pancreatic duct increased the serum level of trypsinogen, trypsinogen activation, pancreatic neutrophil infiltration, macrophage inflammatory protein (MIP) 2 formation and tissue damage. Immunoneutralization of P-selectin decreased the taurocholate-induced increase in serum trypsinogen (median (range) 17·35 (12·20-30·00) versus 1·55 (0·60-15·70) µg/l; P = 0·017), neutrophil accumulation (4·00 (0·75-4·00) versus 0·63 (0-3·25); P = 0·002) and tissue damage, but had no effect on MIP-2 production (14·08 (1·68-33·38) versus 3·70 (0·55-51·80) pg/mg; P = 0·195) or serum trypsinogen activating peptide level (1·10 (0·60-1·60) versus 0·45 (0-1·80) µg/l; P = 0·069). Intravital fluorescence microscopy revealed that anti-P-selectin antibody inhibited leucocyte rolling completely in postcapillary venules of the inflamed pancreas. Inhibition of P-selectin protected against pancreatic tissue injury in experimental pancreatitis. Targeting P-selectin may be an effective strategy to ameliorate inflammation in AP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.