Abstract

Neutrophil infiltration is a key regulator in the pathophysiology of acute pancreatitis (AP), although the impact of Toll-like receptors (TLRs) in AP remains elusive. The aim of this study was to define the role of TLR2 and TLR4 in leukocyte recruitment and tissue damage in severe AP. AP was induced by retrograde infusion of sodium taurocholate into the pancreatic duct in wild-type, TLR2- and TLR4-deficient mice. Samples were collected 24h after induction of AP. Taurocholate challenge caused a clear-cut pancreatic damage characterized by increased acinar cell necrosis, neutrophil infiltration, focal hemorrhage and edema formation, as well as increased levels of blood amylase and CXCL2 (macrophage inflammatory protein-2) in the pancreas and serum. Moreover, challenge with taurocholate increased activation of trypsinogen in the pancreas. Notably, TLR2 gene-deficient mice exhibited a similar phenotype to wild-type mice after challenge with taurocholate. In contrast, tissue damage, pancreatic and lung myeloperoxidase (MPO) activity, serum and pancreatic levels of CXCL2 as well as blood amylase were significantly reduced in TLR4-deficient mice exposed to taurocholate. However, taurocholate-induced activation of trypsinogen was intact in TLR4-deficient mice. Our data suggest a role for TLR4 but not TLR2 in the pathogenesis of severe AP in mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.